Search This Blog

Sunday, October 11, 2009

Just How Sensitive Is Earth's Climate to Atmospheric Carbon Dioxide?

David Biello, Associate Editor, Energy & Environment at Scientific American

In a new article posted at the Scientific America website (http://www.scientificamerican.com/article.cfm?id=how-sensitive-is-climate-to-carbon-dioxide, entitled, "Just How Sensitive Is Earth's Climate to Atmospheric Carbon Dioxide?", indicates,

"Carbon dioxide levels
 are climbing toward a doubling of the 280 parts per million (ppm) concentration found in the preindustrial atmosphere  and could cause a rise in the Earth's temperature from between 2 and 6 degrees celsius."

"Using the research from two new papers published in Science this week which  examined the historical record
preserved in stalagmite and microscopic seashells respectively
to offer some clues."

"Earth scientist Aradhna Tripati of the University of California, Los Angeles's Department of Earth and Space Sciences and her colleagues extracted a record of past atmospheric concentrations of CO2 stretching back 20 million years from the shells of tiny creatures known as foraminifera buried in a column of ocean mud and rock. The microscopic animals build shells of calcium carbonate out of minerals in seawater—a process that is affected by the water's s relative pH (acidity), which is, in turn controlled by the level of CO2 in the atmosphere. More CO2 in the atmosphere means a more acidic ocean."

"The two species we picked to analyze [Globigerinoides ruber and G. sacculifer] are both ones that are around today, and the living animals actually have photosynthetic algae as symbionts, which means that they live in the surface ocean, since the algae require sunlight to survive," Tripati explains. And that means the fossil record of their shells will reveal the relative acidity of the surface waters in the ratio of boron to calcium as well as the specific chemical signature of the boron itself. "When seawater is more acidic, less boron gets incorporated into the calcium carbonate shells," she adds."

The researchers first matched this fossil record secured by the Integrated Ocean Drilling Program Expedition in the western tropical Pacific to existing records from bubbles trapped in Antartic ice cores that stretch back 800,000 years, which preserve a precise record of past atmospheric composition. Thus reassured of the technique's accuracy, they plunged back into deep geologic time.

"Modern-day levels of carbon dioxide were last reached about 15 million years ago," Tripati says, when sea levels were at least 25 meters higher and temperatures were at least 3 degrees C warmer on average. "During the middle Miocene, an [epoch] in Earth's history when carbon dioxide levels were sustained at values similar to what they are today [330 to 500 ppm], the planet was much warmer, sea level was higher, there was substantially less ice at the poles, and the distribution of rainfall was very different."

Further, "at no time in the last 20 million years have levels of carbon dioxide increased as rapidly as at present," Tripati adds; CO2 concentrations have climbed from 280 ppm to 387 ppm in the past 200 years. And "our work indicates that moderate changes in carbon dioxide levels of 100 to 200 parts per million were associated with major climate transitions and large changes in temperature"—indicative of a very sensitive climate."

To read the remainder of this article please click on the following link:

http://www.scientificamerican.com/article.cfm?id=how-sensitive-is-climate-to-carbon-dioxide

As stated at the following website:  http://www.physicalgeography.net/fundamentals/9r.html,

"All life is based on the element carbon. Carbon is the major chemical constituent of most organic matter, from fossil fuels to the complex molecules ( DNA and RNA) that control genetic reproduction in organisms. "

"Carbon is stored on our planet in the following major sinks : (1) as organic molecules in living and dead organisms found in the biosphere; (2) as the gas carbon dioxide in the atmosphere; (3) as organic matter in soils; (4) in the lithosphere as fossil fuels and sedimentary rock deposits such as limestone, dolomite and chalk; and (5) in the oceans as dissolved atmospheric carbon dioxide and as calcium carbonate shells in marine organisms."




"Ecosystems gain most of their carbon dioxide from the atmosphere. A number of autotrophic organisms have specialized mechanisms that allow for absorption of this gas into their cells. With the addition of water and energy from solar radiation, these organisms use photosynthesis to chemically convert the carbon dioxide to carbon-based sugar molecules. These molecules can then be chemically modified by these organisms through the metabolic addition of other elements to produce more complex compounds like proteins, cellulose, and amino acids. Some of the organic matter produced in plants is passed down to heterotrophic animals through consumption."

"Carbon dioxide enters the waters of the ocean by simple diffusion. Certain forms of sea life biologically fix bicarbonate with calcium (Ca+2) to produce calcium carbonate (CaCO3). This substance is used to produce shells and other body parts by organisms such as coral, clams, oysters, some protozoa, and some algae. When these organisms die, their shells and body parts sink to the ocean floor where they accumulate as carbonate-rich deposits. After long periods of time, these deposits are physically and chemically altered into sedimentary rocks. Ocean deposits are by far the biggest sink of carbon on the planet."

"Carbon is released from ecosystems as carbon dioxide gas by the process of respiration. Respiration takes place in both plants and animals and involves the breakdown of carbon-based organic molecules into carbon dioxide gas and some other compound by products. The detritus food chain contains a number of organisms whose primary ecological role is the decomposition of organic matter into its abiotic components."

"Over the several billion years of geologic history, the quantity of carbon dioxide found in the atmosphere has been steadily decreasing. Researchers theorized that this change is in response to an increase in the Sun's output over the same time period. Higher levels of carbon dioxide helped regulate the Earth's temperature to levels slightly higher than what is perceived today. These moderate temperatures allowed for the flourishing of plant life despite the lower output of solar radiation. An enhanced greenhouse effect, due to the greater concentration of carbon dioxide gas in the atmosphere, supplemented the production of heat energy through higher levels of longwave counter-radiation. As the Sun grew more intense, several biological mechanisms gradually locked some of the atmospheric carbon dioxide into fossil fuels and sedimentary rock. In summary, this regulating process has kept the Earth's global average temperature essentially constant over time. Some scientists suggest that this phenomena is proof for the Gaia hypothesis." The Gaia hypothesis states that the temperature and composition of the Earth's surface are actively controlled by life on the planet. It suggests that if changes in the gas composition, temperature or oxidation state of the Earth are caused by extraterrestial, biological, geological, or other disturbances, life responds to these changes by modifying the abiotic environment through growth and metabolism. In simplier terms, biological responses tend to regulate the state of the Earth's environment in their favor.
This theory is important to Physical Geography and other Earth Sciences for the following reasons:
  • The Gaia theory suggests that the abiotic and biotic environment is made up of many complex interrelationships;
  • Many of these complex interrelationships are quite delicate and may be altered by human activity to a breaking point; and
  • The theory suggests that humans must learn to respect Gaia by reducing their intentional modification of the Earth's abiotic and biotic components."

"Carbon is stored in the lithosphere in both inorganic and organic forms. Inorganic deposits of carbon in the lithosphere include fossil fuels like coal, oil, and natural gas, oil shale, and carbonate based sedimentary deposits like limestone. Organic forms of carbon in the lithosphere include litter, organic matter, and humic substances found in soils. Some carbon dioxide is released from the interior of the lithosphere by volcanoes. Carbon dioxide released by volcanoes enters the lower lithosphere when carbon-rich sediments and sedimentary rocks are subducted and partially melted beneath tectonic boundary zones."

"Since the Industrial Revolution, humans have greatly increased the quantity of carbon dioxide found in the Earth's atmosphere and oceans. Atmospheric levels have increased by over 30%, from about 275 parts per million (ppm) in the early 1700s to just over 365 PPM today. Scientists estimate that future atmospheric levels of carbon dioxide could reach an amount between 450 to 600 PPM by the year 2100. The major sources of this gas due to human activities include fossil fuel combustion and the modification of natural plant cover found in grassland, woodland, and forested ecosystems. Emissions from fossil fuel combustion account for about 65% of the additional carbon dioxide currently found in the Earth's atmosphere. The other 35% is derived from deforestation and the conversion of natural ecosystems into agricultural systems. Researchers have shown that natural ecosystems can store between 20 to 100 times more carbon dioxide than agricultural land-use types. "

Source:http://www.physicalgeography.net/fundamentals/9r.html

No comments:

Visit GM Alexandra Kosteniuk's Women's Chess Blog:Please click on the image below:

Visit GM Alexandra Kosteniuk's Women's Chess Blog:Please click on the image below:
Chess needs more women and girl participants and administrators!

Thoughts worth thinking about

"Our subconscious minds have no sense of humor, play no jokes and cannot tell the difference between reality and an imagined thought or image. What we continually think about eventually will manifest in our lives."-Sidney Madwed



Laws alone can not secure freedom of expression; in order that every woman and man present their views without penalty, there must be spirit of tolerance in the entire population.- Albert Einstein Too often we underestimate the power of a touch, a smile, a kind word, a listening ear, an honest compliment, or the smallest act of caring, all of which have the potential to turn a life around. - Leo Buscaglia



A person's true wealth is the good he or she does in the world. - Mohammed



Our task must be to free ourselves... by widening our circle of compassion to embrace all living creatures and the whole of nature and its beauty. -Albert Einstein



The best way to find yourself, is to lose yourself in the service of others. - Ghandi



The unselfish effort to bring cheer to others will be the beginning of a happier life for ourselves. - Helen Keller



Aim for success, not perfection. Never give up your right to be wrong, because then you will lose the ability to learn new things and move forward with your life. Remember that fear always lurks behind perfectionism. Confronting your fears and allowing yourself the right to be human can, paradoxically, make yourself a happier and more productive person. - Dr. David M. Burns



Life is as dear to a mute creature as it is to man. Just as one wants happiness and fears pain, just as one wants to live and not die, so do other creatures. -His Holiness The Dalai Lama



Mankind's true moral test, its fundamental test (which lies deeply buried from view), consists of its attitude towards those who are at its mercy: animals. And in this respect mankind has suffered a fundamental debacle, a debacle so fundamental that all others stem from it. -



Milan Kundera, The Unbearable Lightness of Being



The worst sin towards our fellow creatures is not to hate them, but to be indifferent to them. That's the essence of inhumanity. -George Bernard Shaw

Ego's trick is to make us lose sight of our interdependence. That kind of ego-thought gives us a perfect justification to look out only for ourselves. But that is far from the truth. In reality we all depend on each other and we have to help each other. The husband has to help his wife, the wife has to help the husband, the mother has to help her children, and the children are supposed to help the parents too, whether they want to or not.-Gehlek Rinpoche Source: "The Best Buddhist Writing 2005 pg. 165

The hostile attitude of conquering nature ignores the basic interdependence of all things and events---that the world beyond the skin is actually an extension of our own bodies---and will end in destroying the very environment from which we emerge and upon which our whole life depends.